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CHAPTERI:
INTRODUCTION
The Purpose of This Study

Beginnings

When a lecturer at a teachers' workshop I was attending asked for ideas of how to use
advanced computer technology in the classroom, I began to think about the current limits of
middle school computer programming. I was teaching 3rd-8th grade computer classes in a
parochial school, at the time. Also, my years of experience as a substitute in special education
influenced me. After discovering students who were very bright intellectually, but unable to
articulate their thoughts (such as students with learning disability, autism, or a certain type of low-
verbal developmental disability), I saw the value of increasing their ability to communicate in a
verbal way. Knowing that these students were often good at video games and manipulating
geometric forms in their mind, I wondered how to draw them gradually toward a more
commonplace vocabulary: traditional forms of notation (in math and answering story problems in
words), with the use of computer programs.

Also, I realized that if this gap could be bridged, it would be of benefit to the development
of regular students, as al/ of them are expected to crossover from concrete thinking to being able
to construct a mental image of reality, enabling the creative analysis, combination, and
restructuring of those symbolic forms.

Math would be a good choice of subject matter, both because of the universal need for
basic math skills (individually and nationally) and because math already has a very traditional
notation system: wire-frame outlines of geometric forms, with dashes to mark hidden lines, for

example. It is the epitome of symbolic systems (Gauss' "queen of the sciences" (von Walters-
Hausen, 1856)), connecting the worlds of reality and abstract thought, and allowing the student to

easily manipulate symbolic forms that represent physical realities.



After seeing stunning animations of scientific visualization, resplendent in color, depth,
and accuracy, I tried to think of ways to combine this with the usual programming options for
children, which included Basic and Logo. As a pioneer, I searched for new areas for-expansion,
to be combined with processes that would enhance each individual student's intellectual and
creative growth. From the 2-d computer programming language of Logo (where the children give
a "turtle" simple directions to go forward, back, lef}, and right--and it appears on the flat screen of
their computer monitor) I thought of expanding the frontier to include three dimensions and
realistic-looking graphics.

In order to make it educationally useful, as well, I felt that it should fit in with existing
trends in using computers to teach math, enhance the ability to see how math corresponds to
reality (in space), and encourage creativity. I also foresaw a mixed hierarchical/floating structure
of Nintendo®-like connections that would serve to engage the player as well as to present math in
a logical sequence (when necessary). Optional modules could be added and deleted from the
palette of games, depending upon the current interests and educational goals of the individual
student.

Regarding management, the teacher's role would be assessment of the child's progress and
interests to decide which games to make available. Automatically generated computer logs could
record answers and (possibly) time spent, enabling the teacher to make informed decisions.
Additionally, there would be capabilities for creative, technically-involved teachers to assemble
their own games easily, following the invention of a child-controllable interface (based on the use
of a3 x 3 x 3 grid cube which could be layered over a more intricate architectural/computer

graphics system).



Education and TV: Adversaries or Helpmates
Parents have long been concerned with getting their children to do homework instead of

turning on the TV or a video game. Is this a monster in their living room? Statistics show that
American youth stands out, but in a negative silhouette: they watch more television per day and
do less math homework than many other countries. Negative correlations have been shown to
occur between TV-watching hours and high math scores. Ten out of the 15 comprehensive
populations of 13 year-olds represented in the 1991 International Assessment of Educational
Progress (IAEP) survey showed this effect. The more TV was watched, according to three
categories: 0-1, 2-4, and 5 or more hours per day, the lower the math scores were. Only two
incomplete populations showed a positive correlation (perhaps due to educational television
programs), and the highest scorers in those two countries only averaged about 50% correct. In
the 9 year-old category, the top four (out of 10) comprehensive populations did not have a heavy
television-watching percentage. The United States registered 26% of the younger students in the
heaviest TV-watching category (Lapointe, Mead, & Askew, pp. 70, 94-95).

Besides the appearance of this high TV-watching/low math score correlation, an overall
downward trend in U.S. math achievement has appeared, in recent decades. Also highlighted in
the IAEP survey, 13 year-olds in the United States placed 14th among the 15 comprehensive
populations included in the comparison; 9 year-olds, 9th out of 10th. International status on math
scores has alarmed both math educators and parents. The top students are doing well, but the rest
of the children lag behind many other countries.

The creation of math software that is fun to use might (hopefully) help to improve these
statistics: Instead of being a threat, children's love of the TV (and video game) screen could be
turned to the service of math education. To this end, I have envisioned an educational computer
game set that would be mathematically accurate and graphically beautiful, making use of recently
available 3-d dynamic computer graphics displays. Other authors have designed successful math
software, but more is needed that will make use of the amazing technology available, children's
interest in video gémes, spatial cognition, realistic representations, 3-d coordinates, and creativity.
The envisioned software is not meant to supplant good teaching methods and the necessity for

homework, but instead to be integrated with regular classroom instruction.
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Games and Intelligent Tutoring Systems

Consideration of a design that is engaging to children is of utmost importance. Otherwise
they won't spend time with it. Combining this with the beautifully intricate pathways of a
gradually evolving intelligent tutoring system, should result in a "game" that is both interesting
and geared to teaching on an individual level.

Even exercises don't have to be boring and repulsive; witness Mozart's keyboard exercises
(the Piano Sonatas) that have become envigorating concert fare. Although fascinating details
should not become distracting decorations, they could be harnassed to direct the child's attention
in the right direction. Malone's theories about making games "fun" and some of the principles
behind intelligent tutoring systems will be discussed in Chapter 2.

Functional Design and Patterns
The computer puzzles included in this study form part of a large, gradually gathering game

set called "FunFunctions," which is designed to teach math in a way that is functional.

(1) inthe sense of being an everyday-type occurrence (for instance, riding in a car);,

(2)  inthat the game could actually be extended to be useful in the professional world

(for example, civil engineers construct real roads using mathematical formulas);

(3)  because the spatial skills emphasized by these games would be indirectly useful in many
of the current (and often newly developed) professions (such as CAD architectural
design); and

(4)  in that mathematical functions (such as graphing of functions) should be included in each
of the games, since functions are at the core of math;

(5) it provides multiple representations. This last concept is especially important to this study:
children are to be taught rules, not merely to collect facts. Rule-based learning should be



emphasized over pebble-collecting unrelated facts (by using multiple representation).

Multiple Representations
There are several reasons for using multiple representations of mathematical concepts,
according to the Professional Standards for Teaching Mathematics (National Council of
Teachers of Mathematics [NCTM], 1991):
(1)  marh is made up of patterns, which the teacher demonstrates, so that the students can
construct a model of understanding in their own minds -- "learning occurs as students
actively assimilate new information and experiences and construct their own

meanings...each student's knowledge of mathematics is uniquely personal" (NCTM, 1991,
p- 2);

(2)  emphasize ideas, not just correct answers -- "In order to establish a discourse' that is
focused on exploring mathematical ideas, not just on reporting correct answers, the means
of mathematical communication and approaches to mathematical reasoning must be broad
and varied” (NCTM, 1991, p. 52). In Standard 8, the authors mention the use of
"patterns and functions to represent and solve problems" (NCMT, 1989, p. 98);

(3)  make connections -- "The acquisition of mathematical concepts and procedures means
little if the content is learned in an isolated way in which connections among the various
mathematical topics are neglected" In Standard 4, the authors state that an ideal teacher
"represents mathematics as a network of interconnected concepts and procedures;
emphasizes connections between mathematics and other disciplines and connections to
daily living" (NCTM, 1991, p. 89);

(4)  show the value of math in society and in other disciplines -- "Students should see math as

something that permeates society and, indeed, their own lives" (NCTM, 1991, p. 90).

1

NCTM defines "discourse" as "the ways of representing, thinking, talking, and agreeing
and disagreeing that teachers and students use to engage in those tasks" (NCTM, 1991, p. 20).



Instructional Ideas
How is this to be done, more specifically? The Standards mentions a broad range of

possible representations: "various means for communication about mathematics should be
accepted, including drawings, diagrams, invented symbols, and analogies...also help students learn
to use calculators, computers, and other technological devices as tools for mathematical
discourse" (NCTM, 1991, p. 52). It recommends that the teacher should emphasize how the
multiple representations are linked "with the intent of expanding students' understanding of
mathe-matical content and connections"(p. 89). Also, it states that conventional notation should
be introduced "at points when doing so can further the work or the discourse at hand"(p. 52).

More specifically, the Curriculum and Evaluation Standards (NCTM, 1989, pp. 98-99),
states that in the middle years (the initial focus of this study):

...the study of patterns and functions should focus on the analysis, representation, and
generalizaion of functional relationships. These topics should first be explored as informal
investigations. Students should be encouraged to observe and describe all sorts of
patterns in the world around them: plowed fields, haystacks, architecture, paintings,
leaves on trees, spirals on pineapples, and so on. As the students mature, instructional
efforts can move toward building a firm grasp of the interplay among tables of data,
graphs, and algebraic expressions as ways of describing functions and solving problems.

Three other fields have pertinent additions: Cognitive scientists/psychologists have often
studied the use of representations. Besides using (1) external models (for example, a diagram on
paper) to represent (2) reality (a sensory experience for the individual), they also mention (3)
intermediate representations which are meant to bridge the gap between the known and unknown
(such as when a student is first learning to use algebraic symbols, a balance scale represents
equality). Also, successful experts may leave out steps in problem solving, because they have
internal representations that are neither on paper nor shown in the concrete problem. This
restructuring of information into larger units has become automaticized. The "chunking" together
of information may be part of a third, invisible representation that is unexpected to a beginner
(such as imagining vector forces in physics problems). Placing a problem into this standard,

experts' form of representation is equivalent to translating it into a canonical form. Choosing a
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successful intermediate form involves finding a model that the student can relate to personally and
yet is a good analogy for the original problem. Also, the size of the "chunks" must be suitable for
the student's present level of advancement (for instance, being able to learn a many-digit number
must be preceded by learning how to learn small number sequences).

Secondly, learning-style studies have shown that students favor certain modalities. If one,
for example, has trouble listening to spoken explanations, information in another mode may be
easier to recall. A lecture may be supplemented with hands-on activity, such as constructing a
visual-tactile geometric figure out of straws. Using more modes means the teacher has more
opportunities to reach everyone, especially if one is limited in their communications. For
instance, an student with a learning disability may be able to replay an audio tape (to study), but
have trouble with writing or studying notes, or vice versa. Enabling him/her access to different
modalities may fill in gaps heretofore left as stumbling blocks to progress in math.

A third reason is given by cognitive-behaviorists, who say that multiple representations
give one more of a chance to learn the definition of something. By giving a student many
examples, the range of acceptable, specific items will better delineate the "imaginary" conceptual
range. The concrete is used to show the range of the abstract concept. (A negative example is
often used to emphasize the location of the boundaryline between what is and what is not to be
included in a certain category of objects or behaviors. Besides illustrating the category of "chairs"
with many varieties of chairs, the teacher might want to include at least one example of a

nonchair.)

Using Multiple Representations to Teach Math;: An Example
In a creative, supplementary teaching activity, a math lesson might be based on the

introduction of space figures (three dimensional geometric forms) to 5th graders. In this case,
tetrahedrons would be introduced.
Linked representations could be shown to the child, between:
(1)  solid, realistic models of mountains (tiny scale models the child can hold and place on a
table in various arrangements);
(2) flat, 2-d drawings of several views of the mountains;
(3)  acolorful computer simulation of walking in a simple path through the mountains; and

(4)  wire-frame diagrams that are mathematically correct.



Procedure.
The child is allowed to arrange the tiny mountains on a table. As they are doing this, the

teacher mentions the change in perspective as one moves around the table. (This part of

the activity is only necessary for less advanced students.)

A computer screen shows a flat, 2-d drawing of three mountains. Each is in a different

color or (if in black and white) a different pattern. They overlap each other, to show depth.

The child is asked to imagine walking a certain path through the mountains. Then, he is
given a choice of potential viewpoints, as his final destination. Feedback is given by the
computer.

Gradually, the child progresses to wire-frame diagrams that become more and more like

correct mathematical tetrahedrons (in 3-d) than mountains.

If the individual is having trouble, or would like to explore (as a reward), the computer
simulation of walking along the given path is shown, then the choices are given (of the
destination's viewpoint). Also, helpful hints, usually short sentences, are given if the

student makes certain errors.

Individual learning styles can also be compensated for by choosing one of three strands:
TEXT, DIAGRAM, or ANIMATION, at the start. (This doesn't cover all modalities, but
gives more than the usual lack of choice). Sometimes, a preferred modality may be used
to lead the student into a second form of representation, once the initial display is
understood. In this ricocheting way, students may gradually learn standard mathematical

notation, and its relevance to the everyday world.



Realism and Cognitive Apprenticeship

By placing the example in a realistic situation (not a just text-book word problem), the
student has more chance of being engulfed by that (intellectual) culture, and actually learning what
a professional does. Brown, Collins, and Duguid (1989) state that "knowledge is situated, being
in part a product of the activity, context, and culture in which it is developed” (p. 32). Further,
they say that the way that school teaches the use of conceptual tools is often very different from
the professionals use of them. One may be good at schoolwork, but not succeed in a career, and
vice versa.

They suggest the use of "authentic" activities -- "most simply defined as the ordinary
practices of the culture”" (Brown, Collins, & Duguid, p. 34) to replace the "hermetically sealed"
present-day school methods. Instead of word problems which have been in a recognizeable form
for the last 500 years that is "foreign to authentic math practice," situated learning or "cognitive
apprenticeships" should take place. Therefore, construction of a more "situated" environment
would be of great benefit. The realism of recent advances in technology, game-like but
mathematically and architecturally accurate constraints, and the use of an intelligent tutor® that is
adhesive to the students' progress are three major breakthroughs that may be gained by using

available computer technology.

*Intelligent tutoring system [formerly called a tutorial/: Programs through which the
computer assumes total responsibility for instruction. Tutorial programs are characterized by a
dialogue between the student and the computer in which the direction and level of the dialogue
are shaped by student input. Ideally, such programs would be high fidelity simulations of the best
teaching behavior associated with a given topic and would control the variables associated with
the what, why, when, and who of the instructional episode. (NCTM, 1981, p. 13)



10

Statement of Purpose: Curriculum Development

Construction of A Game Set to Increase Math/Spatial Comprehension
Spatial abilities have been divided into two main categories, that of spatial visualization

and spatial orientation. These will be described in more detail later. Spatial visualization,
especially, has been positively linked with math achievement. Doug Grouws, in the Handbook of
Research on Mathematics Teaching and Learning (1992, p. 455), states that "mathematics
achievement generally correlates with spatial visualization in the range of .30 to .60," mentioning
several studies which support this: (Battista & Clements, 1990; Ben-Chaim, Lappan, & Houang,
1988; Fennema & Tartre, 1985; and Tartre, 1990). Although research has found a high
correlation between spatial and math skills, exact details of this correlation have not been resolved
yet. Also, some methods for the training of spatial skills have been developed, but are still a scarce
commodity.

This study agrees with past research stating that: (1) spatial aptitude can be improved; (2)
spatial skills can transfer to math skills; and (3) software can be developed to improve spatial
aptitude. The accompanying paper describes construction of a prototype game set and gives

reasons to support its usefulness (through theory, literature review, and an exploratory study).

Benefits

Some of the benefits of creating courseware® to supplement math classes are:
(1)  interactivity--causing higher student motivation and a closer match to their individual
skills;

(2)  emphasis on the visual mode--helpful for those who have high spatial abilities;

3Courseware is a set of computer programs with which a student has direct interaction during
a learning sequence. The use of the term courseware is much more restrictive than
software.. since software also refers to management or utility programs with which the learner has
no direct interaction. (NCTM, 1981, p. 4)
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(3)  adoorway between regular textbook geometry and the real world (especially helpful to
this age group, which is in the middle of developing their abstract thinking abilities);

(4) insistence upon the use of multiple-modes, which will give variety, reinforce concepts with
multiple examples, and may be used to lead the student toward standard math notation and

reading.

Prototype

The purpose of this study is to design, test, and further shape this prototype courseware
(and related instructional materials), which are specifically designed to improve spatial and related
math skills. This paper describes construction of a prototype game set and gives reasons to
support its usefulness.

Three of the games (Mountain/Perspectives, Mountain/Cubes, and Mountain/Angles) have
been completed and have undergone limited testing and evaluation, while the fourth (Freeway) is
in a preparatory stage, awaiting proof that its patchwork design is possible. Concrete details are
provided as to its construction (which will hopefully take begin in 1994). Underlying it is the
forthcoming invention of a custom-generated landscape (data) set, to be traversed with the use of
a child-controlled interface. This interface might act as a shell, allowing other teachers to create

their own spatially-related modules.
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CHAPTER 2:
REVIEW OF THE LITERATURE
Intuition, Logic, Abstraction, and Intelligent Systems

Microworlds

Although the modeling of authentic environments is sought by the author, a truly realistic
simulation would be overwhelming to a player's senses, because of the amount of detail presented.
This would make it hard for the pupil to pinpoint important systematic properties and
relationships that we are teaching. Therefore, certain themes are to be selected for inclusion in
this small world. These themes would be emphasized verbally and visually, as well as by the
existence of certain constraints in this artificial realm. Meanwhile, other, equally common
characteristics would have to become invisible. This sort of learning environment has been called
a "microworld."

There are three main categories of perceptual cues to be emphasized in this learning
world. First of all, there is the emphasis on the basic themes, truths, or facts of the discipline
being taught (in this case mathematics). Secondly, there is a presentation of the expert's
conceptualization of this world. It may or may not be related to the visible world (as in
representing vector forces as arrows). The third usage, here, is in the creation of intermediary
forms that will engage the learner's interest and move him/her along to the next stage, ultimately
to the expert's viewpoint. The stages are not necessarily sequential, although some of them are,
depending upon the content area being taught. (These three categories are concerned with
domain (or content area), the expert, and intermediate representation).

Interwoven throughout this microworld are two textures of 3-d realism and beauty.
Apparently, adherence to graphic realism is more important to the beginning learner than to
advanced students. According to Richard Burton: "...the displays in which information is given
must resemble the real equipment...As the students learn more, this reliance decreases" (Burton,
1988, p. 122; Johnson, 1987). Increasingly abstract representations may be uséd, in keeping with

the student's ability to organize his knowledge into more sophisticated structures.
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Fidelity and Mental Models

Burton says that at least four kinds of realism, or fidelity, have been identified by
researchers:

(1)  physical fidelity - same sense of touch;

(2)  display fidelity - same appearance;

(3)  mechanistic fidelity - same behavior; and

(4)  conceptual fidelity - is thought of as the same thing (Burton, p. 120-1).

The importance of each of these depends upon the stage that the learner is in. Based upon
cognitive science's theories about learning, that a student's conception of a problem changes in
stages as his comprehension develops ("learning is more like a series of miniparadigm shifts,"
Brown & Burton, 1987, p. 71), it would be best to give the student several graduated
instructional models, rather than to teach the expert's model in the first step. Fischer, Brown, and
Burton have proposed a framework that would be a progression of "increasingly complex
microworlds that provide intermediate experiences such that within each microworld the student
can see a challenging but attainable goal" (Burton, p. 123).

One of the problems involved would be to determine the student's present level. The kind
of computer system that could do this would have to react to the student's answers and decide
what screen to present next. Behind the scenes, it would have to keep track of the student's
progress, find the difference between the student's and the expert's viewpoint, know when and
how to help the student, and decide which problems to present next. This individualized and
interactive system, based on cognitive science/psychology research, may be called an Intelligent
Tutoring System (or ITS). Some examples of this may be seen in CMU's mathematics and

programming tutors (Koedinger & Anderson, 1993).
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Educational Philosophies and Definition of Terms

Certain educational philosophies and terms have arisen in conjunction with this

technological development (Burton, 1988, pp. 110-111). Many of them are mentioned above:

)

@

3)

)

&)

constructivism - learning actively; constructing knowledge out of the student's present
concepts, by letting him/her "rediscover" new relationships, procedures, and facts; Brown
and Burton wrote that: "Speaking metaphorically, unless the student's conceptual
eyeglasses are more or less attuned to the world view or ontology of the simulation
designer, then what appears as a meaningful event to the designer may be seen either as

noise or not seen at all by the student" (Brown & Burton, 1987, p. 70).

rule-based learning - learn with meaning; learn procedures, relationships, not just
unlinked facts. "One of the longstanding debates in mathematics education,” wrote
Hiebert and Carpenter, "concerns the relative importance of conceptual knowledge versus
procedural knowledge or of understanding versus skill...which kind of knowledge is most
important is the wrong question to ask...A better question to ask is how conceptual and
procedural knowledge are related” (Hiebert & Carpenter, 1992, p. 77);

bugs - locate student misconceptions and correct them with the diagnostic help of the

computer (see "Student Modeling");

connections - (actively stressed in the NCTM Standards) means that the teacher
emphasizes textbook problems about the real world (see "cognitive apprenticeship," page

9); as well as parallels and interwoven areas, bridging separate disciplines;

metaskills - the student must learn to be objective about his/her own style of learning;

self-monitoring and -management;



(6)

M

(8)

©)
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manipulatives - in order to encompass the student's symbolic learning within our
"concrete” reality ("an intermediate 'pedagogical notation' bridges from the concrete
material to the formal symbolic system"; learn actively; may also include computer usage
(Kaput added that there must be a "balance between the use of physical materials and
computer analogs of those materials" (Kaput, p. 528-529)).

Clements and Battista (1986, p. 29) wrote that, " The use of manipulatives ahould
promote the development of spatial visualization...that underlies geometric

thinking...[and] should be oriented toward problem solving."

multirepresentation - model symbolic concepts in several different forms and modalities.
Clements and Battista set a suggested guideline: that "Students should be involved with
four representations of a new idea" (Clements & Battista, 1986, p. 29),

problem solving - also related to rule-based learning: the student must learn methods of
structuring and searching his knowledge, not just adding factual pebbles to his memory.
Join the hunt for "the Ghost of General Transfer" mentioned by Singley (1989, p. 25): "A
variety of researchers have recently called for the identification and codification of
'general' cognitive skills. Simon (1980) claimed that powerful general problem-solving
methods do exist, and what's more, they can be taught." Others have criticized this view,
saying, "neither mathematics education nor cognitive psychology has yet come up with a
reasonable theory of problem-solving instruction, let alone any prescriptions for

instruction which have broad application to mathematics classrooms"(Lester, 1982, p. 58).

Intelligent Tutoring System (ITS) or (ICAI). "A computer program that (a) is capable of
competent problem solving in a domain, (b) can infer a learner's approximation of
competenée, and (c) is able to reduce the difference between its competence and the
student's through application of various tutoring strategies" (Polson, Richardson, &
Soloway, 1988, p. 263).
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Philesophical Roots

What has been the philosophical evolution of these ideas? Although there have been many
philosophers, educators, scientists, mathematicians, and psychologists who polished these ideas
over the centuries, there is room to mention only a few examples. A couple of philosophical
themes have repeatedly surfaced in the long-running conversation (between major intellects) that
has shaped our culture and our view of mathematics. For instance, René Descartes, a rationalist,
argued that the concept of space arrives as an innate idea before experience, while Berkeley, an
empiricist, believed that sensation must precede perception of reality (Hart & Moore, 1973, p.
252).

Blaise Pascal discussed the difference between the mathematical mind and the intuitive
mind at the beginning of his Pensées (1670): The mathematical mind sees principles easily, but
it is difficult to turn one's mind in that direction, while the intuitive mind sees easily the ordinary
things that are in front of him. When the mathematicians are not intuitive, they want to have
definitions first, before observing. He liked the geometers' logic best, because they combine the
best of both worlds: they don't try to define certain primitive words, but they do carefully define
everything else (in On Geometrical Demonstration, 1657).

Henri Poincaré divided mathematicians into two categories, those with analytical minds
(that is, seeking solid step-by-step progressions) and those with intuitive minds (using images, and
leaping to conclusions). He defined intuition in a slightly different way, referring to the use of
internal imagery, beyond Pascal's inclusion of direct observation. Combining both intuitive and
analytical methods, Poincaré wrote that "A great advantage of geometry lies in the fact that in it
the senses can come to the aid of thought, and help find the path to follow, and many minds prefer
to put the problems of analysis into geometric form" (Poincaré, 1946, p. 380).

Ernst Cassirer theorized that there were three levels of spatial experience: (1) organic or
active space, (2) perceptual space (in higher animals), and (3) symbolic or abstract space. He
called the third level the borderline between human and animal worlds, saying that only humans
have the ability to understand and represent abstract space, the space of "pure intuition," even

without a concrete referrant (Hart & Moore, p. 252).
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Beauty

Another interesting theme emerges with the separation of spatial perception into three
parts: the fascinating elegance of mathematical ideas. The relevance of this theme should be
considered in mathematics education. In The Foundations of Science, Poincaré pointed out the
importance of the "intellectual beauty which hides beneath sensuous beauty...which makes
intelligence sure and strong” (p. 368). He said that mathematics "has an esthetic aim...its adepts
find therein delights analogous to those given by painting and music. They admire the delicate
harmony of numbers and forms; they marvel when a new discovery opens to them an unexpected
perspective...joy they thus feel...even though the senses take no part therein" (Poincaré, p. 280).

Math gives a different appearance to those who love it. What do these people see in
math? Jerry King wrote in The Art of Mathematics (1992) that, "There is, first of all, the
motivating force for mathematics which is beauty, and then the goal of mathematics which is
truth. And finally, there is the importance of mathematics resulting from what the mathematical
truths tell us about reality" (King, p. 8). The truth and reality descriptions may be self-evident,
but what about the aspect of beauty?

There is a sense of beauty in both visible and non-visible worlds of math. In the visible,
there is the calligraphy of math notation (as in the [ - integral sign) and geometrical forms which
represent the beauty of naturally-occurring shapes. In the second realm, there is the elegance of
optimal formulas, patterns in nature, proofs, and surprising problem solutions. In between, there
is the halfworld of scientific visualization, where visual models of physical data sets enable one to
quickly recognize (otherwise hidden) patterns in the numbers. Scientific models can be attractive,
fascinating, and revealing: Edward Tufte wrote, "To envision information--and what bright and
splendid visions can result--is to work at the intersection of image, word, number, art...The
principles of information design are universal--like mathematics--and are not tied to unique
features of a particular language or culture" (Tufte, 1990, pp. 9-10).

On the next page is an example of scientific visualization which accurately pinpoints
geographical distribution, chemical composition, and concentration of Los Angeles smog.
Surprisingly, it is beautiful. Also, it shows many characteristics of the pollution, instantiously, that

would not be evident after many days of poring over long lists of data in tables (although this is an
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accurate representation of exactly the same statistics). Characteristics of the image: the color is
related to ozone concentration and the three-dimensional "view" appears to be from a plane. In
an extended video version of this display, the clouds of pollution roll in, and eastward, in their
daily cycle.

[put figure of supercomputer

modeling here]

Figure 1: Scientific visualization, with the use of a computer.

From Prajects in Scientific Computing, 1989-90. (1990, p. 8). Pittsburgh, PA:
Pittsburgh Supercomputing Center.

King hoped that all students can learn to appreciate the mathematical elite's viewpoint,
"provided the methods of presenting and writing mathematics are changed so as to bring the
aesthetic component out into the open and to develop a sensitivity for it in students as we now
attempt to develop in them a sensitivity for the poetry of Shakespeare, the music of Brahms..."
(King, p. 134). How can one affect a student's development in this way? NCTM's Curriculum
and Standards (1989, p. 98), suggests: "Exploring patterns helps students develop mathematical
power and instills in them an appreciation for the beauty of mathematics." Once again, NCTM is
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suggesting searching for patterns, learning how to generalize them, and the multiple
representation of functions. Beautiful though accurate models of these patterns will hopefully
place a metaphor in the minds of the student--of the beauty of the patterns behind the data. Also,
representing data over time or multiple examples, in animation, may help to emphasize the
abstract idea behind the data. Certainly, recent advances in computer graphics have made both of
these possibilities for mathematics instructors. Following this, we will discuss Piaget's view of

the child's cognitive development. Next, are some suggestions about methods of instruction.

Mental Development
Jean Piaget described several stages that a child passes through in mental development.

Beginning with reflexive actions (0-2 years -- sensorimotor) the child explores and experiments.
In the next stage (about 2-8 years -- preoperational), the child learns to use images and languages,
"and begins construction of its own universe" (Hart & Moore, p. 254). Then, the following
period (7-12 years -- concrete operations), the child can think logically, and see things from
different orientations. Gradually, (after about 13 -- formal operational thought) the images are
able to take on a life of their own, separate from concrete reality, and the child is able to deal with
abstractions, unconnected to the physical world. This is not by exact ages, but is rather an
approximation. Hart and Moore wrote that this development is defined as "changes in levels of
organization independent of time" (p. 255).

Also, many parts of the theories, such as whether the stages occur suddenly or gradually
build up; are composed of grouped abilities or interwoven single threads; have become
controversial. Catalysts and the effect of the child's environment have also been debated.
However, the important theme here is the existence of order or sequence. And that it
encompasses the double worlds of sensation-logic; or concrete-abstraction. What did Piaget say
is the catalyst for making this progress take place? He wrote that hands-on experience should
come before verbal or abstract reasoning: "logic does not arise out of language but from a deeper
source and this is to be found in the general coordination of actions" (Piaget, Mathematical
Education, 1972/1977, p. 726). Concrete activity with objects, particularly for young students, is

considered to be an essential means of comprehending arithmetic and geometry.
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Besides doing physical activities, the other essential key is that the objects should
correspond with the child's present understanding of the world. By being able to link the new
learning to existing internal structures, the child's mental structure (schema, mental model,
framework) will grow. Piaget said that "the representations of models used should correspond to
the natural logic of the levels of the pupils in question, and formalization should be kept for a later
moment as a type of systematisation of the notions already acquired. This certainly means the use
of intuition before axiomatisation..." (Piaget, 1972/1977, p. 732).
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Computers and Education

The Computer Culture
Andrea diSessa, of MIT's Artificial Intelligence Lab, suggested that:

"being able to choose and walk a straight path across the room is every bit as much
knowledge (albeit knowledge within process) about geometry as Euclid's axioms. ..
axiomatics cannot engage the more general style by which people quickly and effectively
learn about the world. People are more fundamentally model builders than they are formal
system builders." (diSessa, 1978, p. 17)

This modeling tradition has been carried into the computer world by Seymour Papert (inventor of
Logo), who also worked in MIT's AI Lab. His idea of restricted environments (or microworlds)
enables a child to concentrate on a few perceptual cues as well as to creatively participate in its
formation: "the child programs the computer and, in doing so, both acquires a sense of mastery
over a piece of the most modern and powérﬁxl technology and establishes an intimate contact with
some of the deepest ideas from science, from mathematics, and from the art of intellectual model
building" (Papert, 1980, p. 5).

He described deficiencies in the normal way of teaching math and physics: dissociated
patterns are taught as prerequisites to learning the "interestirig" material beyond what the student's
motivation will tolerate. Mathophobia and boredom often result. Instead of this, he suggested a
new instructional method: "a computer-based interactive learning environment where the
prerequisites are built into the system and where learners can become the active, constructing
architects of their own learning" (Papert, p. 122). He called it "a Piagetian learning path" and
hoped to enable children to enter a "Mathland" culture, where they could more easily learn math,
just as one could learn French more easily in France.

If this all sounds like a fantasy to you, consider the fact that in 1993, thirteen years after
publishing Mindstorms, Papert was awarded the Software Publishers Association: Lifetime
Achievement Award and is currently the director of MIT's Media Lab. The SPA said:

"More than any other individual, Seymour Papert has been responsible for transforming
the way education views the role of computer in schools. Papert showed that computers
are ideal tools to promote creativity, critical thinking, and problem solving"

: (Electronic Learning, 1993, pp. 8-9).
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Public opinion has followed polar extremes, from promoting his new computer language as
educational magic to prominent rebuttals of his ideas, such as Jan Hawkins of Bank Street
College stating that Logo has promised more than it can deliver (Hassett, 1984). Papert
answered, in 1985: "Logo is not a person; it neither promises nor delivers. It's a medium of
expression...I'm struck by the variety of forms it takes...in different cultural, social, and
educational settings...there is, of course, no 'right way' of using Logo" (Papert, 1985, p. 3).

This study describes an educational game that uses computers in many different ways,
including presentation of multiple choice tests (and automatic recordkeeping), an intelligent
tutoring system, and colorful graphics. Some of the modules will give more or less options to the
student in color; text or animation; control of construction. Some of these choices will be

discussed in more detail below.

Conversation with the Computer
There are two basic branches of ITS interfaces: "first-person” and "second-person"

interfaces (Miller, 1988). A first-person interface allows the person to have "direct"" interaction
with the computer: often just clicking on a Macintosh icon will result in a dynamic, graphical
change. On the other hand, second-person interfaces act through an second layer, frequently with
the use of a programming language.

The computer game mentioned here would hopefully include both options. Generally,
control of the interface should be accessible to even young children (first-person). However, a
few, more sophisticated sections would allow use of programming commands (second-person).
Examples of the second-person interface would be (1) the Freeway module, which lets the user
build roads in small sections--then travel on completed pathways; or (2) Open Construction,
which would allow building in Logo-like 3-d. Each of type of interface has its own educational

advantages.

' As McTear has said in The Articulate Computer*, people definitely can't talk to computers,
and computers only appear to talk to people. What's even worse, merely a small detail in error
can cause a computer to act as though it is dead or catatonic!
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Computers in Math Education
In An Agenda for Action: Recommendations for School Mathematics of the 1980s, #3,

the National Council of Teachers of Mathematics stated emphatically that: "Mathematics
programs must take full advantage of the power of calculators and computers at all grade levels"
(inner cover, NCTM, 1981). They included their position statement on Computers in the
Classroom (from October, 1980), in which they listed some mathematical uses. Many; of their
general aims are the same as this author's:

Mathematics programs designed to take full advantage of the multidiscil;linaxy potential of
computers should include the following: _

. Problem solving

. Simulations® that give the opportunity to practice decision making

. Lessons that introduce and develop concepts...

. Simulations that replace dangerous, expensive, or technically difficult laboratory
work

. Programming. ..

. Functions that improve the evaluation process

Curriculum materials should be developed that capitalize on unique characteristics of the
computer. Such materials should providWonal experiences heretofore impossible
as well as imaginative approaches toexisting components of the curriculum.

(NCMT, 1981, inner cover)

There are now many arithmetic-tables software packages available for the math classroom,
Many of them are basically drill and practice, encased in colorful graphic games. Some of these
are extremely useful and very engaging, but are not what we are considering here. In‘describing

the difference between drill and practice and simulations (here, equivalent to microworlds), Nils

ZSimulation: Programs that attempt to represent key aspects of some environment within which
the user will experience the necessity to make decisions and will be informed of the results of
those decisions without experiencing the real consequences of possible misjudgements. The time
required to develop and use simulations with high fidelity is justified in situations where actual
experience is ruled out because of extreme expense, safety considerations, or the time required for
the actual experience. Siumulations include problem solving tasks (e.g., negotiation of a bank
loan, diagnosis of illnesses or equipment failures, genetic experiments, testing theoretical models),
procedural tasks (e.g., acid titration, blasting, the breeding of organisms), and performances (e.g.,
control of water pollution) (NCTM, 1981, p. 13)
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Peterson (1984, p. 287), wrote:

In dnill and practice, the computer attempts to program the student with certain facts. The
student is a passive learner. Simulations, however are active learning environments. They
provide a world for the learner to explore...In addition to facts, simulations teach the skills
of the explorer: scientific method, debugging, and hierarchically organized thinking.

This and other kinds of software are more similar to what FunFunctions is designed to
contain: (1) intelligent tutoring system: inside, an intricate hierarchy, based on domain content,
that is used to guide tutor's decisions; (2) spatial abilities mastery: 3-d transformations,
rotations, and orientation; (3) dynamic computer graphics: interactive control by the student;
(4) accurate coordinate system in 3-d: architectural software; (5) simulations: active learning
environments (as in microworlds). ‘

Examples of these are:

(1) ITS: CMU mathematics tutors;

(2) spatial mastery: Sachter's J3D (Sachter, 1990);

(3) and (4) student may guide graphing of functions: Mathematica, MathCad, and Maple;

3-d accuracy: virtual reality and AutoCad;

(5) simulations: CMU's electronic shuffleboard (for teaching physics); ChemTool (only

allows certain chemical bonds). '

There is a large amount of overlap between these categoﬁeé. A few generate the scientific
visualization mentioned above. Some are more accessible to a student than others, in being
immediately interactive and front-end usable. The learing curves af;e very long in much of the 3-
d modeling software (the last two examples). Some are mostly in text (1), while others have
beautiful graphics. Oﬂen;Ftl\lis curve (and amount of cémputer memory needed) increases when
there is a high amount of aesthetic appeal and the user can construct freely. For example,
architectural software encompasses accuracy, beauty, and freedom, but takes years to completely

master and is time-consuming to use in a detailed project.
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If FunFunctions grows as it should (matures properly?), it will integrate all these features
into an easily used interface. This is one of the major changes that should be added to 3-d
modeling software: child-usability. There are already a few attempts at this, but they usually lack
accuracy, preserving perspective without the mathematical accuracy of architectural software.

Also, once the interface is in place between all the modules and tutorial levels, an easily
usable front-end is in place, and testing has been done, the whole gameboard could be separated
from content-knowledge, leaving a shell that could be used by others. This would be similar to
the way that MYCIN, an diagnostic medical system, was used to generate a shell that could be
used for other instructional purposes: MYCIN was the original software, which contained a large
knowledge-base of medical information (an expert's facts), as well as a way to search and make
decisions (inference engine). Then, the knowledge was separated out, leaving an "empty" (thus
EMYCIN) shell that others could use (Knox-Quinn, 1988).

Existing and evolving intelligent tutors at CMU (in math, economics, and programming)
have been encouraging role models, for me: (1) they combine at least two linked representations
(hypotheses with geometric drawings; text, equations, to graphs; etc.) and (2) incorporate
internal production systems® based on the subject being taught and the present state of the
étudent's understanding. ‘

On the other hand, constructive geometric software (such as The Geometric Supposer,
The Geometer's SketchPad, and Cabri Ge’ométré) gives an example of how to create
environments with constraints. They are meant to lead the student toward a better understanding
of the rules that set external limits on their activities. This would be inductive reasoning, defined
in Discovering Geometry as: "the process of observing data, recognizing patterns, and making
generalizations from your observations" (Serra, 1989, p. 39). Instead of being a concrete modet
of algebraic concepts, dynamic models capture better the general understanding of variables

(Kaput, p. 529). Traditional "literals" show an instantiation frozen in time, not the functional

3 Production systems -- are manufactured by breaking down procedures into one-step choices.
As each operation is encountered in the program, the computer is preprogrammed to act upon it
or not, depending upon the present conditions (state). In humans doing algebra, for instance, this
might be thought of as the numerous rules used (almost unconsciously) to factor a number
(Simon, 1988).
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concept of variables changing. Another beneficial use of computers in mathematics education was
mentioned above, in "Educational philosophies," computers as manipulatives. Ohlsson (1987)
wrote that using solid objects and pictures to illustrate arithmetical concepts may not be as
helpful as was assumed, due to (1) not being similar enough (not isomorphic), (2) the knowledge
will transfer, and (3) it may be as hard to learn as the original was. However, he wrote that
computers could aid this illustration by yoking it to mathematical concepts. For instance, a child
could be given control of how many objects to generate (on the computer screen). The computer
could automatically show the mathematical equation for this: "When an illustration world is
defined on a computer, the generative character of the definition translates into exploratory
freedom for the learner. The learner can literally discover how mathematics describes the world
by creating any arbitrary configuration...and then have the computer tell him what the correct
mathematical description is" (Ohlsson, 1987, p. 341).

A related use is visualization:

The first step in data analysis is the visual display of data to search for hidden patterns.
Graphs of various types provide visual display of relations and functions.. For centuries
artists and map makers have used geometric devices such as projection to represent three-
dimensional scenes on a two-dimensional canvas or sheet of paper. Now computer
graphics automate these processes and let us explore as well... Learning to visualize
mathematical patterns enlists the gift of sight as an invaluable ally in mathematical
education.  (Steen, 1990) :

e

Computer Games
There are many reasons to use interactive computer games: (1) a "microworld" can be

organized to create a parallel universe w}xergﬁlere is a certain sense of reality while all the
nonessential factors are dropped out; (2) motivation is raised by the challenge to conquer the
game (see Malone, page 25); and (3) the child receives individual feedback to his responses (cued
to the recorded history of correct answers and errors, and constrained by rules of the
microworld). Also, recent technical advances have made more realistic and accurate computer
graphics and animations superior to representations in other modes.

A different author from MIT's Artificial Intelligence Labratory, Brian Carr (1977)
described why games, and specifically com}nKter games are very appropriate as an educational
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tool. He said that games can be fun and still teach valuable skills, "an ideal teaching instrument."
Yet, he wrote, one must be careful in how one constructs such a computer game. His was an
early effort at creating an intelligent system that would make use of the program's ubiquitous
presence and also know when to step in and offer advice:

However, students can reach a plateau in their game playing and cease to try new
strategies. When this occurs, the learning process halts. A solution to this problem is to
encourage improved game strategies. Unfortunately, the cost of providing human
teachers to watch the game (and offer suggestions) is prohibitive. However, it is possible
to use a computer to monitor the progress of the game and to offer suggestions when
warranted. With this goal in mind, a program was written to serve as just such an advisor
for a computer game (Carr, 1977, p. 3).
This is a very important, and constant issue to consider. Throughout each game module in
FunFunctions, content and timing of advice must be preprogrammed. Much of it depends upon
the present concept being taught. Sometimes it is self-evident how to give advice. At other

times, the only answer is to automatically branch the student to another part of the game set.

Game Passageways
Concept sequence. The games in FunFunctions are to be linked together in Nintendo-

like fashion, but instead of secret passageways, real concepts must be mastered in order to pass on
to the next level. Eventually, the whole game should be linked together, mostly in an
mathematically understandable way (as in the Van Hiele levels). At this time, however, the games
were presented in separate modules, with only two passageways (between Perspectives and
Cubes; and between Mountain and Freeway) in place.

Random. Ho;ovzler, planned pathways may also be supplemented by unexpected
passageways, by the player's choices or the computer's random generation. This would help to
increase interest (see the following section) without harm, if the important sequential structures
are in place.  Singley, in The Transfer of Cognitive Skill (1989, p. 19), stated that:

"Many researchers have failed to find any effect for principled curriculum design.. Notable
among these failed attempts were the scramble studies, where carefully designed programs
of instruction were pitted against versions whose frames had been randomly ordered...One
moderately successful study was done by Buckland (1968), who found that less capable
students were hurt by the scrambled curriculum but more capable students were not."
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Perhaps many of the connections could be set "randomly," left open to the player's choices, or set
in alternating ways to record the effects of learning math in different sequential patterns,

Palette. Another difference between this version and the later, more complete one,
would be that the the later one might have replaceable modules; mastering one area could give
one the choice of replacing it with more advanced areas (calculus, etc.). Also, special interest
areas could be added, depending upon age, interest, and special needs; similar to an artist's choice
of palette colors, which changes from day to day, depending upon the individual picture to be
painted. This would be supervised by the teacher, who would choose which modules to display,
influenced by the student's suggestions.

Multiple modes. In fact, one of the primary envisioned purposes of this game was to use
it with students who have trouble with verbal communications, but have superior spatial skills (as
in students who have learning disabilities (verbal), but high video game mastery (spatial)).
Through this game, with its requirement of passing parallel levels of the same questions (in
Mountain Perspective's: Text, Diagram, and Animation tracks, for example), multiple
representation would help to reinforce concept, while linking stronger areas to weaker ones, in a
supportive role.

A person with cerebral palsy wrote about how computers were used to release his
"trapped intelligence." In this case, a computer's keyboard (tactile mode of communication) was
used to overcome a deficiency in verbalization:

Trapped intelligence is a phrase which is used to describe people who have normal or
above normal intelligence but are non-verbal or slow talking and society assumes that
these people are stupid.. For the first nine years of my schooling,...nobody knew what my
potenial [sic}was or would be...[after working with a computer language, we found that] a
scientific break-through had taken place...new avenues of communication and education
have been opened. (Micheal Murphy, in Valente, 1983, pp. 129-130)

The opening of new modes of communication has also been used in mathematics education by
Sylvia Weir and E. Paul Goldenberg. For instance, one student was able to divide the perimeter
of a regular polygon into the correct number of units when it was presented as a problem on the
computer screen (visually, with "hands-on" exploration), although previously unable to solve it
(Weir, 1987; Goldenberg, Russell, & Carter, 1984).
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How to Make an Educational Game Interesting
Thomas Malone's theories explain the characteristics that make an educational game

captivating. As he said, his "studies focus on what makes the games fun, not on what makes them
educational" (Malone, 1981, p. 333). He organized the most important characteristics into three
main categories, which each include several factors: Challenge, Fantasy, and Curiosity.

Under Challenge, Malone included Goals (personally meaningful, obvious, as
performance feedback); Uncertain outcome (variable levels of difficulty and goals, hidden
information, and randomness); Toys vs. tools, and Self-esteem. He stated that toys and tools are
often at opposite ends of the spectrum, so far as challenge goes: "the tool itself should be reliable,
efficient, and usually ‘invisible'. In a sense, a good game is intentionally made difficult to play to
increase its challenge, but a tool should be made as easy as possible to use" (Malone, p. 359). By
self-esteem, he meant that the level of difficulty should be set so as to encourage a sense of
success: have variable settings that can be adjusted appropriately and give feedback in a
nonthreatening way. Of course, this must be done in a balanced way. Otherwise, the game would
be unchallenging, and thus boring.

Fantasies are either Intrinsic* or Extrinsic, and have both Cognitive and Emotional
effects. He said that in most intrinsic fantasies, "problems are presented in terms of the elements
of the fantasy world, and players receive a natural kind of constructive feedback...In general,
intrinsic fantasies are both (a) more interesting and (b) more instructional than extrinsic fantasies"
(p. 361). Cognitive effects include the aid that old knowledge gives when used as a metaphor in
modeling new concepts: understanding, restructuring, and memorizing the new ideas would be
improved. Emotionally, different fantasies are needed for different peope: fulfilling varying
emotional needs, social roles they see themselves in, and, perhaps, there are rewards to presenting
them in the best learning modality for each separate person. Malone suggested giving the player a

choice of imaginary participants and problem fantasies.

““Intrinsic" - in this sense, means that playing the game is its own reward.
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Curigsity, the third category, means that the designer should search for an optimal level
of complexity. This includes Sensory curiosity (audio and visual effects) and Cognitive curiosity
(well-formulated knowledge structures and informative feedback) at a level that is "novel and
surprising, but not completely incomprehensible... There is no reason why educational
environments have to be impoverished sensory environments" (Malone, p. 362-3). Malone said
that cognitive curiosity takes place when the "knowledge structures" (or story plots) are
complete, consistent, and parsimonious. He gave the example of the strong motivation we have
for finishing the last chapter of a murder mystery. The other important aspect of cognitive
curiosity is informative feedback. In order to fulfill this, the feedback should be surprising and
constructive (showing one Aow to change their mental model to make it more complete and
accurate).

Other structural features (mentioned by Malone) that encourage motivation are: the use
of multiple perspectives, lack of scoring on new ideas, ability to make inferences about hidden
information, personalization, and choice.

Malone (p. 356) tied his three main categories in with Piaget's ideas: "he [Piaget] claims
that people are driven by a will to mastery (challenge) to seek optimally informative environments
(curiosity) which they assimilate, in part, using schemas from other contexts (fantasy)." However,
as Malone mentioned, these are difficult to interpret educationally. Malone's ideas have given us a

much more detailed level of resolution, which is helpful when assembling educational courseware.

Application
How are Malone's ideas (Fantasy, Challenge and Curiosity) applied to the design of
FunFunctions?

Levels. Some of game modules can only be entered through successfully completing a

lower level. Also, the teacher would be able to control availability of certain modules (for
instance, a third-grader would not see an icon for a game using calculus). Other games would be
removed if they were too easy for the user. Invisible record-keeping should be used to decide
whether enough component subgoals had been reached to allow the student to enter any of a

number of possible game modules, in a branching manner.
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Student Modelling. This would have to be based on student modelling (or modeling)
procedures, which show the difference between "expert" knowledge and the student's present
state of knowledge. This may be done by overlay, in which the student diagnostic model is
assumed to contain (only) part of the expert's knowledge; or with a bug library (or bug parts),
which then adds on student misconceptions. Interactive behavior, determined by the student's
accurate understanding or false knowledge, may be diagnosed by the final result (the answers
chosen), in tiny steps which are then matched to an overall model (model tracing), or by dynamic
generation, finding a path that will lead from the student's activities to the nearest model
(VanLehn, 1988; Ohlsson, 1992*). Then the tutor will have to "decide" what to do next: fill in
conceptual gaps,advance the student to a higher level, or correct misconceptions.

Unexpected pathways. Unexpected pathways and blockades between different game
modules could also be used. Some of these would be based on logical sequences (see the
following section), while others would change from time to time (according to student choices,

computer random generation, or teacher management).

Order of presentation
Although much learning can be "absorbed" spontaneously by experiencing "the computer

culture", a certain amount of domain knowledge is sequential (depending upon the subject area).
For instance, in arithmetic, addition is prerequisite to an understanding of multiplication. Not
everything needs to be in a set order (and will indeed add to game interest, by being unexpected;
see Malone's theories, above) but some subjects are constrained, when they contain basic areas
that will later be subcomponents of higher level knowledge. Gagné, working with other
educational psychologists, decided that curriculum design should be influenced by learning
hierarchies. In some cases, learning could transfer almost automatically, such as in the learning
of computer programming languages, but at other times, subordinate skills (or learning sets)
would have to be mastered before "higher-order skill," or the aim of the instruction, would Be

learned.
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Deciding how to structure these learning hierarchies of component learning sets should be
an integral part of instructional design. Problems with this approach are two-fold: in finding the
proper decomposition of skills (task analysis) and in matching them with the individual student
(such as knowing when to allow the more capable students to skip certain component parts).

Other theories about sequences include Bruner's spiral curriculum, where ideas are
reintroduced at more advanced levels, each time building in detail; Ausubel's progressive
differentiation, where general statements prepare the student for complex topics; and Reigeluth's
elaboration theory, where amount of abstraction, or resolution, zooms back and forth, to give the
student a bigger picture of where the knowledge is fitting in (Singley, p. 16-20). While teaching,
an ideal tutor would decide where each student, at each moment, fits in to the overlay model (of
expert's knowledge) and bug library (of misconceptions), before choosing what to teach next. "In
general, the next topic should be chosen from those subject-matter units which are not yet

mastered, but which have all their prerequisites ticked off as known" (Ohlsson, 1992, p. 208).

Math sequences
Piaget worked out an intricate sequence of mathematically-based learning after creating a

meticulous study of learning tasks. He wrote that topological learning precedes projective, which
is then followed by Cartesian coordinates. It is interesting that this is the reverse order of how
math coursework is usually taught: topology follows many years of algebra and other courses
(which all include x-, y- coordinates); and 3-dimensional figures are taught affer plane geometry
(except for a smattering of decorative polyhedrons). Meanwhile, perspective-drawing, related to
the projective viewpoint, is usually taught to artists and vocational tech students, not as a math
course at all.

"Historically," said Piaget, "these intuitions appeared in Euclidean geometry, the
structures of projective geometry were not discovered until much later and topology only in the
nineteenth century," while children of three and four can distinguish topological concepts (open
and closed areas, for instance) progressing to:"later and simultaneously, projective notions (with
verification by 'taking aim' or 'sighting’) and Euclidean notions according to a process which is
nearer psychological theory than history" (Piaget, 1972/1977, p. 729).
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Yakimanskaya et al (1991, p. 202) emphatically agree with Piaget's analysis, in place of
the present system (both in his country and America), saying: "The current mathematics
curriculum actually realizes a reverse pattern," ignoring "psychological laws." Yakimanskaya et al
write that, among other things, the students initial grasp of 3-d space is inhibited by the constant
use of merely 2-d representations in geometry: "The rich store of experience, accumulated from
manipulating real (solid) objects [in primary school] seems to be suspended once they start plane
geometry, since the content and logic of this subject entails the exclusive use of two-dimensional
representations... Moreover, the constant use of two-dimensional representations leads to over-
attachment to a fixed observation point" (Yakimanskaya et al, p. 134).

There have been some additions to Piaget's ideas in the decades since his books were first
published in English. Not everyone agrees with him. However, one currently used mathematics
education structure that remains related to Piaget's theories is the Van Hieles' hierarchy. The
following Van Hiele levels are adapted from Clements & Battista (1992, p 431):

(Level 1) Information. Students learn vocabulary, and geometric shapes. The teacher

discusses them, and listens to the child, in guiding his/her teaching.

(Level 2) Guided orientation. Students explore geometric objects (for example, folding,

measuring) under the direction of the teacher.

(Level 3) Explicitation. The children become aware of their geometric conceptualizations,
and begin to learn some of the traditional language for this subject. The teacher
discusses geometric ideas and patterns with the class in "their language," then

introduces the traditional math terminology.

(Level 4) Free orientation. The students learn to structure and use the geometric objects
and ideas they have learned about earlier. The teacher selects appropriate
geometric problems (which have more than one solution path) and introduces

relevant terms and tools.
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(Level 5) Integration. The students build a coherent network out of what they have learned
so far. Eventually, the teacher leads them towards the structure of formal

mathematics.

Textbooks
Addison-Wesley Publishing Co. overtly makes use of this hierarchy in their 1992 textbook,

Informal Geometry. They also have a checklist of four items that link this book to the Standards
and also this study's computer game (p. T1):

. Intuitive learning through hands-on activities and visualization exercises,
. Connections to algebra and the real world with applications;

. Discussion exercises encourage communication and cooperation;

. Technology is integrated into this course.

Another book, Discovering Geometry: An Inductive Approach, by Michael Serra (1989), has
similar qualities. It is perhaps no coincidence that it has been used in conjunction with The
Geometry Proof Tutor and Angle, intelligent tutoring systems at CMU. Only a third mainstream
textbook making obvious use of spatial visualization has crossed the author's path: Spatial
Visualization, part of the MGMP, Middle Grades Math Project, also published by Addison-
Wesley (1986). Other activity books in this vein are usually published as supplements, not part of
the main curriculum.

Despite encouragement from the Van Hieles, Piaget, and the Standards, visualization has
not yet made great headway in the standard math curriculum. There is a need for spatially-

oriented curriculum, and especially software, which enhances the inductive approach.
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Spatial Realities

Three-dimensional models
So far, most of the existing microworlds have been on a flat plane. That is one of the main

differences between FunFunctions and the other microworlds. The use of a three-dimensional
model would be even more realistic (which is especially important to the younger child, according
to Burton. See "Fidelity and Mental Models" above). Also, it could be used to help them
improve their spatial understanding, and thus, their math skills.

Spatial Understanding and Math
NCTM's Curriculum and Evaluation Standards for School Mathematics (1989, p. 48),

includes spatial understanding as a focus issue: "Spatial understandings are necessary for
interpreting, understanding, and appreciating our inherently geometric world." Jean Shaw wrote
in the Arithmetic Teacher that, "Without spatial sense and the vocabulary to describe
relationships, we could not communicate about positions or the relationships of two or more
objects. We could not give and receive directions for finding locations or completing simple
tasks...We would be hampered in our abilities to analyze figures and the relationships of their
parts" (Shaw, 1990, p. 4).

Career success in many disciplines may be related to high spatial abilities': Ben-Chaim,
Lappan, and Houang (1988, p. 52) stated that investigation of spatial perception is to be valued
"for its relationship to most technical-scientific occupations and especially to the study of
mathematics, science, art, and engineering". Relevant quotes abound about the value of this

"spatial understanding."

'Some authors have distinguished between skills and abilities. The latter are what we are born
with and the former are the areas that can be developed. In the Webster's New Twentieth
Century Dictionary, 2nd edn. (1979), ability is defined as "power to do (something physical or
mental)," while skill is derived from the Old Norse word for discernment and knowledge. In this
paper, we are concentrating more upon the areas that can be improved by teaching knowledge
and discernment, the skills.
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‘The two main branches of spatial abilities/skills ar\e spatial visualization and spatial
orientation. Spatial visualization means mentally moving or transforming an imagined object,
either by turning it or rearranging it. The other branch, spatial orientation refers to the
understanding of visual patterns, coordinate systems, and ability to change one's perspective.

However, since spatial skills are essentially non-verbal, it is more difficult to discuss or
publish detailed reports in this subject area than about areas that are more easily articulated.
Defining of terms is a problem, in itself. Metzler and Shepard (1974) theorized that the study of
3-D rotations might seem like an obscure area because of verbal inaccessability,while authentically
being very important:

...the possibility should be considered that the long-standing preoccupation of
psychologists with exclusively verbal processes in learning, memory, problem solving, and
the control of behavior generally may be a reflection more of the relative accessibility of
verbal processes than of the preeminent role that verbal processes play in human
thought...It is hardly surprising that, during its long submission to the strictures of extreme
behaviorism, psychology found little room for even the term "mental image." (p. 70-71)

However, since that time, partly due to their efforts and extensive investigations, mental models,

imagery and spatial abilities have become much-more discussed topics in the last two decades.

Hard to Define

Historically, researchers studying general intelligence factored out at least one spatial
variable (distinct from numerical and verbal factors) at the beginning of this century. Yet, after
many decades, ambiguities remain in this area. And although it has been found that there is a high
correlation between certain spatial skills and math achievement, the exact nature of this
relationship is not clearly defined:

Researchers have also investigated various skills believed to contribute to mathematics
learning and have found spatial skills to be related to mathematics achievement. Using
various techniques, studies have demonstrated that many spatial skills are positively
correlated with a wide variety of mathematics tasks. Yet the precise nature of spatial skills
and the manner in which they contribute to or predict performance in mathematics... is
largely unknown. (Tartre, 1990, pp. 27-8).
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One of the major findings of spatially-related investigations was the gender-linked
correlation with math achievement. It appears to be one of the main factors that covaries with
math ability, differentiating males from females, while staying proportional with math achievement
(Leder & Fennema, 1990):

Spatial ability is one of the factors most consistently linked to gender differences in
mathematics achievement, one dimension of educational outcome. The conflicting
findings--excerbated by definitional confusion--that have characterized much of the
research suggest the need for carefully structured and clearly described further study.

Some studies have found great sex-linked differences, while others have considered them
insignificant. In one school, when certain spatial skills were factored out, gender differences
became very small: "Using scores on spatial visualization as a covariate, the difference between
the sexes in mathematics achievement became nonsignificant” (Fennema & Sherman, 1977, p. 64).
Further investigation into these relationships would be of academic value, both to scholars and to

teachers.

Improving Spatial Skills
Although the limited scope of this research (small n value) and the early stage of the

software's development prevents any decisive conclusions about either the development of spatial
skills or correlation with math skills, this exploratory study is expected to reinforce past research
findings. Most important of all, it should be helpful in guiding the development of this
supplemental instructional program, which aims to give spatial training. At least this is one thing
that every researcher (who writes about it) agrees with: the equalized benefits of spatial training.

One such study was completed by Ben-Chaim, Lappan, and Houang (1988). They found
sex differences in spatial abilities in sixth, seventh, and eighth grade students, but not in fifth grade
students. After this, they conducted a much larger study involving 1000 students. This time, they
found: "The most important result of this investigation was that after the instruction intervention,
middle school students regardless of sex gained significantly from the training program in
spatial visualization tasks. The students made across-the-board gains in posttest item types" (p.
66).
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Specific Spatial Skills
A central problem has been to define spatial skills. As Lindsay Tartre says, "Each

researcher seems to have his or her own definition of 'spatial skill' * (Tartre, p. 28). No wonder
scholarly progress in this area has been sparse: contradictory, overlapping, and/or vague
terminology has often confounded clarification of research findings. Fortunately, Lindsay Tartre
has distilled the branches and redefinitions of these skills into an easy-to-read tree (see Figure 2).
For a very helpful sample of related test questions, also see the meticulous details in the book
Math and Gender (1990).

Figure 2: Specific Spatial Skills

Spatial Skills
Spatial Spatial
Visualization Orientation
Rotation  Transformation Rcorgamzed Part of
From "Spatial Skills, Whole Fleld
Gender, and _
Mathematics" by L. Find Fit
Tarte, 1990. In E.
Fennema & G. Leder Ambiguous Multiple
(Eds.), Mathematics Figure Representations
and Gender (p. 30). %‘;D
New York: Teacher's . 3D

College, Columbia
University.
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Explanation of Research Correlations
Some researchers have attempted to explain the correlation between spatial and math
skills:

Many hypotheses have been suggested to explain how and why spatial skills relate to
mathematics performance. Smith (1964) proposed that "spatial abilities may be involved
in the perception and assimilation of patterns, either in the structure of geometric figures
or in the more general structure of mathematical symbolism..."(p. 125). Schonberger

(1980) stated that "the use of charts, diagrams, and graphs in all branches of mathematics

argues for the logic of this connection between 'spatial ability' and mathematics" (p. 189)

(Tartre, pp. 45-47).

Other authors have attempted to explain how both spatial and math skills are correlated with
gender differences. The appearance of differences has been credited to many things: different
perception of space, eyetracking, testing, genetics, strategies, societal pressures to do poorly in
math, physical activities (such as the fact that boys tend to play in activities that move through
space), previous classes(either spatially or math related), or interests. This range is almost
equivalent to the nature or nurture controversy, and just about as unsolvable..

However, once again, there is a retreat from this argument to the much more constructive
concept of training: whatever the differences are due to, they have been able to be improved,
which is supported by experimental results (see above). But how should one go about this
training? Many of the reasons for choosing computer graphics have been listed in the
"Computers and Education" section. However, this is not the sole means of teaching. An
integrated approach (with a person teaching, solid models, pictures, and explanation of concepts
and goals) would be the more beneficial. The computer section of the instruction would be only a

supplement, perhaps lasting three weeks. Of course, the concepts would have to be carried

throughout the semester by the teacher, in lecture and class activities.
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Why Use Computer Graphics to Teach Spatial Concepts?

There are several facets to this answer: the "intrinsic"

relationship between 3-D graphics
and the X-, Y-, Z- coordinates in reality; the close to real-time response time; the ability to
interweave far-branching questions; the ability to respond "intelligently" to the child in the absence
of human tutors; and the child's attraction for anything on the screen. Also, it is more convenient
for the teacher, who now only has to draw a 3-d model once (not repeatedly for every -
perspective) and has the added benefit of multiple views or examples, thus making generalization
and comprehension of the drawing more accessible to the children.

Judy Sachter worked with 10 and 11 year-old children (the same age as in this study). She
found that the children enjoyed 3-d computer graphics and "created wonderful work with it." She
wrote that it would be of great educational value for children to have access to it, despite its
difficulty for them to use it (due to the interfaces):

Presently 3-D computer graphics is being used a great deal to study various scientific

phenomena through simulations, scientific visualization, dynamic systems, and in the

design process in many fields (e.g., architecture, engineering, automobile design, etc.). I

believe that all of these fields that currently use the medium could offer a great deal to the

educational field if children had access to it to play with science and to design artifacts. It
is in the power of computer simulations that this benefit becomes magnified. Not only is

3-D computer graphics a place where children can explore space, but it could also be a

virtual world, where one can go from the microcosm to the macrocosm, from science to

art, and back again. 3-D computer graphics has always been an interdisciplinary field of

computer science, and it has moved into the world as an environment that both artists and
scientists have appropriated as their medium of choice. (Sachter, 1990, p. 250)

The invention of an easily child-controllable interface would be of benefit to many people,

including Judy Sachter, who has already imagined and done some research on this possibility.

? "Intrinsic” representation - means that there is a structural equivalence between the data and
the model. For instance, length of three sticks could be shown by a barchart in the same
proportion. If an extrinsic procedure were used instead, such as making each point (representing
a stick) extend an arrow to every point shorter than it, this would be much harder to interpret
visually. The 'natural' correspondence is much easier to understand (Palmer, 1978).

Moving through virtual space, immersed in a head-set, is a much more intrinsic
representation of physical space than a flat outline map would be, for example.
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From Everyday Reality to Math Notation

In one section of the game set (Mountain Perspective) questions were presented in
sequential order, because 1 wanted to gradually draw the students from their everyday spatial
perception of the world (via intermediate representations) into an understanding of standard math
notation. In this situation, the questions ranged from looking at mountains from different angles
to counting the facets on 3-d wire-frame polygons copied from a textbook's geometric notations.

This is meant to create an eye-opening effect that would hopefully stay with the student
from then on. An appropriate quote is by Richard Lesh (1990): "Once it became natural to view
the world through Descartes' three-dimensional glasses, people tend to have difficulty
remembering what it was like before this conceptual framework was constructed” (p. 92). The
purpose would be to change the way the student views math wireframes, nof to be a boring,
repetitive drill. Once the new "term" is learned, there would be no necessity to eye-opening
exercises. However, repeated practice of spatial skills, as mentioned above, is helpful as found
consistently by many researchers (including Ben-Chaim, Lappan, & Houang, 1988; Palirand &
Seeber, 1984).

Concrete-Abstract
In effect, the software should help children to cross the chasm between concrete thinking

to formal operations (in the Piagetian sense). For this reason and other reasons (such as the
existence of 10-and 11-year old sons!), the author chose to begin work with fifth-graders--at the
projected Piagetian awakening/practice time for this new world.

By creating microworlds that are constrained by only a few rules at a time, as opposed to
the ill-defined swirl of factors that one is faced with in reality, the teacher can choose to
emphasize certain themes. In reality, thousands of forces affect our everyday life (according to
chaos theory: a butterfly's flapping it's wings in Japan may affecting the weather here). Ina
microworld, only a limited number of factors are chosen. For this reason, they stand out more

easily, while nonessential themes drop out.
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In this way, the novice can be trained to think like an expert: ways of looking at a subject
can be funneled into a canonical form (a shortcut method of abstract thinking, used by the
experts). For example, the physics major is trained to think in terms of vectors, a force that is
seen as an almost physically-sensed microworld-type force--but "physical" in the mind's eye, not
reality. In some ways, this is restrictive to the other creative ways that this budding scientist
might think. But it is like another language he must learn. And after the new scientist realizes
that such microworlds can be constructed, he may discover his own way of seeing things. Instead
of being merely knowledge-based (as in learning arithmetic facts), knowledge-based learning
(focused on understanding) should be emphasized. Karl Popper remarked:

“...What I suggest is that we can grasp a theory only by trying to reinvent it or to
reconstruct it, and by trying out, with the help of our imagination, all the consequences of
the theory which seem to us to be interesting and important...One could say that the
process of understanding and the process of the actual production or discovery
of...[theories, etc.] are very much alike. Both are making and matching processes...The
matching aspect is that it has to fit into a framework" (Popper & Eccles, 1977)

Overcoming Gaps
Another application for this concrete-abstract bridge would be in special education.

Especially students with learning disabilities could benefit from this, whenever they have high
spatial and low verbal abilities. Then, their spatial abilities could be capitalized on in a way that
(1) is often commercially unrepresented (for example, only one well-known company at a recent
math convention had a unit on spatial abilities; others, infrequently, included it in a half-page box);
and (2) could be used as a conduit to other seldom-used areas in the individual's life (for example,
using a high-spatial video game to lead the student to a more verbal area, especially if it is a
learning disability area).

This is a frequent occurrence in students with learning disabilities: low verbal and high
spatial abilities. It was also evident with one of this study's students, who rated highly in spatial
tests and puzzles, while lower verbal ability correlated with low math scores. Improving spatial
abilities should improve his math scores, as an alternate route of communicating math concepts is

found. Also see "Multiple modes" under "Game Passageways."
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For students with cultural, gender, or physically-linked gaps in their math skills, both
spatial (see above) and computer training would be helpful. Both the ability to visualize models
and familiarity with computers has been linked to success in math and science, and thus careers.
Smith (1964), with the U.S. Employment Service, listed spatial ability achievement as a predictor
of career success in mathematics, engineering, and many scientific categories; Pallrand & Seeber,
(1984), linked spatial ability with success in physics; and mathematics, again, Fennema & Sherman
(1977).

Other studies have linked avoidance of computer use with low success rate in many math
and science related careers. One example is from Badagliacco (1990, p. 53). He found that
women expected computer-use to be very difficult, part of "the general syndrom of females'
perception of mathematics and science being more (or too) difficult for women--that is, the myth
that women may be unable to achieve competence in arease that require the use of computers."
Overcoming the students' "fears" of computers and math would be a great bonus in itself’
Perhaps a computer game can be helpful in this way, as well as the more obvious goals of

teaching math concepts, notation, and spatial reasoning.
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CHAPTER 3:

PROTOTYPE DESIGN AND PILOT RESULTS
Prototype Design

General Overview of Games

The icons for a whole series of games is presented in the colorful, full-page drawing. A
sketchy outline of each game's storyline and outward appearance was initially mapped (elsewhere,
in notebook form). Whenever relevant software or images was glimpsed, they were sought out
and included in the notebook. Sometimes, this involved seeking out interviews with local
computer scientists, architects, and authors. This included visiting the art and architecture
departments at Kent State University. (I was already enrolled in a math and computer teacher's
institute, IFSMACSE.)

As I presented my brief ideas to (sometimes) interested people, they often directed me to
more people, who were usually both knowledgeable and able to give me new, fascinating
perspectives on the project. Consistently, over two years of pursuing the project in my spare
time, 1 felt like I was on an adventure, similar to a constructive murder mystery. Some of the
especially helpful people along the way were: E. Paul Goldenberg, Phil Lewis, Bill Lucak, Skip
Van Wyk, Carl Loeffler, Rob Woodmont, Gaea Leinhardt, Hermi Tabachneck, Mitch Nathan,
Ken Koedinger, Stellan Ohlsson, Anna Blevins, and most of all, Dr. Nous. Also, helping me
narrow my focus, were Herb Simon and Chris Schunn.

When overwhelmed by what looked like twenty years of work ahead of me, I didn't
know where to start. Several people told me to start with the simplest part of my game, make a
prototype, and then worry about the rest of it. Finally, I chose three starting points: Mountain
Perspective (like Piaget's three mountains), Freeway (construct a roadway), and the 3-d data set
controller that will enable accurate passage between the two and three dimensional realms.

The first module exists in a HyperCard facade (which will later either be the connecting
point of many kinds of integrated software, or live only temporarily as a prototype). The last two
have their plans and software set for next semester: using virtual reality (WorldToolKit for

Windows) and the valuable help of one of Pitt's graduate information science students.
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Specific Spatial Skills Emphasized by this Game Set
MOUNTAIN/PERSPECTIVES. This computer game is meant to sharpen the student's

ability to translate diagrams in two dimensions into mental models that correspond to our
everyday three-dimensional (3-D) reality. Many of the questions are viewpoint related. It
includes several different facets of spatial skills (see Spatial Tree), such as 2-D to 3-D and 3-D to
2-D Transformations, 2-D and 3-D Rotations, and Multiple Representations.

MOUNTAIN/CUBES. This short, but difficult game makes use of 2-D to 3-D to 2-D
Transformations, while restricting the representation of the 3-D figure. (Concrete models may
used to supplement the imagination, until the child begins to understand how they are
constructed.) Rotation (or Multiple Representation) of the model is also necessary.

MOUNTAIN/ANGLES is a 2-D to 2-D Transformation, where the student is building one
plane surface of a mountain by combining tangram-like parts (most useful when done mentally).
If the plane surfaces are combined into a whole mountain, it becomes a 2-D to 3-D
Transformation.

FREEWAY. This game is meant to create an intermediate representation, a bridge
between the child's sense of spatial reality and math notation. By flipping back and forth between
wire-frame diagrams, created by the child, and 3-D animations (virtual reality), the student should
get a better understanding of the correlation between coordinate systems and the reality they
represent: a Spatial Orientation skill. (Many of the other skills are indirectly included, depending
upon the individual task being pursued.)

TEACHING AIDS. Along with the games included in this prototype are a good many
teaching aids. The manipulatives (Legos, wooden cubes and dice) are to be used to help the child
represent the problems in a concrete way. They are another span to connect questions--concrete
models--computer microworlds--imagination--abstract analysis--solutions--reality. They are a
hands-on activity, which the mind remembers more easily ("Tell me, I forget. Show me, I

n

remember. Involve me, I understand." according to a proverb.) Also they can be used to
temporarily represent 2-D to 3-D and vice versa Transformations, until the students' mind begins

to operate more easily in the new language of math notation.
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Other teaching aids directly represent 2-D to 3-D Transformation (cutting out and
assembling polyhedron models), and Multiple Representation (the colorful mountain pictures,

which may also be represented in computer pictures instead of their present paper form).

Specifically, Mountain Perspective:

Mountain Perspective contains three modal representations (text, animation, and
diagrams) of seven questions. The sixth question is identical in all tracks. The seventh question
is a variation of one of Judy Sachter's sample questions in "Kids "n Space," (1990), an M.1.T.
doctoral paper. It is the Johnson-Meade adaptation of Shepard-Metzler's cube rotations. Each
question looks nearly identical in all tracks. However, the answers presented differ in the Text
track, which has only words. Also, in the 3-d track, rough animations simulate movement.

The colorful mountain pictures were created by using 3-d modeling software to form one
model. Different perspectives were generated by changing the viewing angle and/or the style of
representation. The initial model did not have to be changed to create the many variations! These
examples were generated with a quick version of Stratavision, then were roughly animated by
zooming in on them (in HyperCard). Within the Mountain area, the other two choices are Angles
and Cubes. Mountain Angles concentrates on angle representations. Mountain Cubes uses

three-dimensional cubes to enable the children to develop their spatial abilities (listed elsewhere).

Variations: Minor differences in questions involved changing the viewing angle from left
to right on the first question and using the word "helicopter" instead of "airplane" on the second
question. Also, in the correct answer, location varied both within each series of seven questions
and on the same question in different tracks. In the previous study, there were duplications
between 3-d First and 3-d Last. One of them showed the diagrams before the animation (to orient
the viewer), while the other alternative showed the animation first. They both used the same
answer screens. In the present version, these two branches have been consolidated into one 3-d
path. The alternate choice has been preserved (invisibly), possibly for comparison purposes, later.

Meanwhile, each subject will only be able to take one of the 3-d paths.
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These qﬁestions and answers are printed in miniature form in Appendix B: HyperCard
stack. In a different notebook, there is a copy of an older version: Dividers mark the beginning
of each section. Certain portions, for instance the floating layer of colored mountain pictures,
would not print out. As a result, most of the Animations are not visible. Several pages of
colorful mountain scenes are included near the end of this appendix to show the pictures that were
used to create these simulations and floating pictures (which also accompanied the first five

questions).

Records: Recently created records (containing a blank, covering field to shield them from
students' eyes) appear to be empty cards. This protective layer has already been removed from
the earlier records at the end of the sta‘ck. Choosing the "Teacher access” option would make
them all visible, even while playing the game. Fortunately, all the data included in this analysis
printed out successfully. Within the HyperCard stack, the records are created in reverse order,

since they originate from a template for recordkeeping cards..

Motivation: feedback when right (sound, congratulations, and scorekeeping) culminating

in an attempt for the "Hall of Fame" and the opportunity to go on to the next level; feedback

when wrong (signposts and the obstruction of all forward movement).

Remediation: hints that were optional initially were automatically uncovered on later
attempts. (More is needed, as the program is developed.) Also, the student was forced to see the
problem in at least two different ways, because each child had to try both tracks.

For more detailed descriptions of the questions, see Appendix I: Software. In the second
section, different versions of the same question are drawn on single pages. It might be helpful to

refer to this appendix while reading the next paragraph.
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Human tutor, students, and developers

The interweaving of design and human tutoring were apparent throughout this study. As
the courseware was used in the school, it was adjusted to the suggestions of the schoolchildren.
Also, observation of the children provided feedback on the best methods to use, what needed to
be clarified, and what the next level of educational advancement should be. Halff, in "Curriculum
and Instruction' in Automated Tutors," said that it was necessary to experiment with alternative
methods of tutoring, and that:

Design knowledge can also come from observation. Of interest in this regard are Wizard-

of-Oz systems, semiautomated tutors in which a human tutor (like the Wizard of Oz)

replaces some or all of the instructional functions of an automated tutor (like the machine

that the Wizard used to project a wizardly presence to visitors). (Halff, 1988, pp. 99-100)
This study was completed in the same manner: the teacher filled in many gaps between
computerized sections. In this way, the students received instruction in many different ways,
optimizing the theme of multiple representation beyond the computer screen. Other additions
included: verbal instruction, paper construction activities, manipulatives, and a book. The
constant presence of a teacher, was for the purpose of adapting the project to each individual
student, providing human contact (which should never be completely left out of computer
instruction), and troubleshooting for program bugs in this still-developing prototype.

In order to provide more social contacts, two students at a time were scheduled. For this
reason, two computers (2 Macintosh Ilci and a Centris) were brought in each week. In this way,
at least they would have the company of one other student. They weren't permitted to use the
same machine, however, so that they would each have the advantage of trying to solve all screens.
(Also, it wouldn't have been possible to separate out their individual scores, from the automatic
records.) A future possibility would be to let them work as a team, then only count the paper-
and-pencil test results. After teaching computer classes, the author has decided that a two-person
team would be optimal; but it is not always possible, especially when apaptive, individualized

instruction is used.

"He defines curriculum to mean "the selection of and sequencing of matierial to be
presented to students" while instruction means "the actual presentation of that material to
students" (Halff, p. 80).
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Also, the author's presence at all the computer sessions enabled her to encourage and
clarify suggestions made by the students, as to how to improve the software. Their expressions of
interest and unscheduled time spent on certain portions of the modules was another influence on
the modification of the module. Also, several children drew helpful pictures, to show how to
create new questions or to modify the present presentation. Several of these were included in the
next week's computer session (in which the author pointed how the child's idea had influenced the
development of that section).

While observing them, the author also wrote down a few comments the children had made
(verbal protocol). A future possibility would be to record their conversations, for analysis of best
methods of instruction (both by computer and human interaction), clarification of confusing
choices, and indications of where sections should be expanded or shrunk. This was done already,
to a limited degree. Future plans have been changed or expanded, due to direct observation of the
students: certain repeated displays will be changed into single, random-generated questions (due
to unpopularity of this small set); colorful 3d illustrations will be included even more (due to
interest); level of the questions must be adapted closer to the children's abilities, either by
expanding all the possibilities to include many more gradations or by adjusting them to this

narrow range of children; and scoring will be emphasized.

Teaching and Learning from Others

One of the perservering issues that constantly reappeared, throughout development, was
the combination of distinct disciplines. Surprisingly, when searching out solutions to
programming problems, the author unearthed disparity and lack of communication between
several "apparently” similar disciplines. One way this happened was when lack of communication
(due to time constraints, narrow focus, and mismatched vocabularies) prevented a commonly used
procedure from becoming a solution to a different field's search. For instance, highly
sophisticated 3-d modeling systems that slice up data sets into beautifully colored solid models
and cross—sectiods are basically unheard of in the field of mathematics education; text-based,
incredibly intricate and logical instructional computer programs lack the slickness of accurately

animated, physically accurate front-end designs--both only located a few buildings, but many



50

perspectives, away: Medical, artistic, and especially architectural software would be of great
benefit for mathematics education; more consideration of interface would be make text-based
tutors more successful in entering the educational field (generating acceptance by teachers,
interest in students, and purchase by administrators); and beautifully graphical forms pursued by
commercial artists should be yoked to important content (fulfilling the empty images eagerly
broadcast and distributed across the globe).

Meanwhile, on a completely different, more personal level, the teacher's role should be
carefully considered in the instructional design. For one thing, the content of the courseware must
be based on accurate material, gleaned from expert sources. In teaching mathematics, the
classroom teacher, the researcher, and the mathematician should be consulted. Since this project
was designed to be integrated with regular classroom instruction, it was important to consider the
teacher's classroom knowledge and value her suggestions. In this case, the author was lucky
enough to have chosen a teacher who was generous both with her classroom and her ideas. For
instance, the teacher helped to divide the students into two mathematically even groups. She also
made some statistically beneficial suggestions about the design of the research. As to the other
considerations (research and mathematics): the author (1) sifted through much related research
literature (as seen in the preceding literature review) and (2) studied math and math education
(receiving a math teaching certificate).

Integration of many fields is necessary for any instructional courseware design to be
successful. Respect for other fields, visiting other laboratories for interviews with experts in
related fields (humbly, even going outside one's area of expertise), and openness to innovation
should be included by any designer. Many levels of proficiency are needed, for instance in: (1)
domain expertise, (2) programming abilities (this is a computer program), (3) interface design
(communication with the student), (4) strategy and sequencing (storyplot), and (5) evaluation of
the student (knowing where to go next). When one is lacking in an area, other people should be
sought out.

Returning fo the subject of "teaching:" while working with a classroom teacher, there are
several reasons to maintain consistently good communication with this teacher. One is that

success or failure of the software may be closely linked to the way the teacher is using it. Also,
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the teacher's suggestions may be as valuable as the student's verbal protocol, in shaping the
development of the software. Another reason is that the teacher can give specific hints as to how
to deal with this class (the teacher knows them better). Especially if a developer has 7ot already
done some teaching, the teacher's advice about teaching strategies may be invaluable. Otherwise,
learning by experience, which takes longer (perhaps longer than the study), will have to occur.
Another way the teacher can be helpful is that he/she can report the students' out-of-classroom,
perhaps more candid, comments. The last point, here, is dissemination of the program. If the
software is to be distributed through schools, it won't succeed unless the teachers have a positive
attitude towards it and understand it. For this purpose, free demonstrations (which includes this
type of study) and teacher training should be developed.

Many of these ideas have been supported through research. However, that is not the
purpose of this section of the paper. Explaining the rationale, points of emphasis, and design of
the pilot are all that could be accomplished at this time. Perhaps another paper should be written
to expand upon the particulars of the "teaching” part of the design's development. Meanwhile, the
author looks foward to implementing the next stage of the designwork, with the help of a

programmer.
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